Applied and Natural Science Foundation
Its publication:
Journal of Applied and Natural Science
An International Journal | Print ISSN: 0974-9411 | Online ISSN: 2231-5209
Sign up for free registration!
Already registered Log in
*Email Id  
[Forgot Password]
Journal of Applied and Natural Science 6 (1): 47-56 (2014)
Removal of Zn2+ and Pb2+ using new isolates of Bacillus spp. PPS03 and Bacillus subtilis PPS04 from Paper mill effluents using indigenously designed Bench-top Bioreactor
Pushpendra Pal Singh* and A. K. Chopra
Department of Zoology and Environmental Science, Gurukula Kangri University, Haridwar-249404 (UK), INDIA
*Corresponding author. E-mail:
Abstract : Biosorption processes have the potential to decrease environmental hazards through their factors such as initial metal ion concentration, temperature, pH and biomass concentration in the solution. In the present study biosorption process was performed using the strains of Bacillus spp. PPS 03 (KF710041) and Bacillus subtilis PPS 04 (KF710042) isolated from sediment core of Paper mill effluent (PME) for the removal of Zn2+and Pb2+ in an indigenously designed Bench-top Bioreactor. The temperature, initial pH, biomass and incubation period of PME for Zn2+ and Pb2+ reduction was standardized. The strains exhibited significant reduction in Zn2+ and Pb2+ of PME to the extent of 73.29% and 85.64% with PPS 03 and 78.15% and 87.57% respectively with PPS 04 after 120 hrs of aerobic treatment. The reduction in the metals occurred from first day of the treatment, but the maximum reduction in these metals was observed after 120 hrs. at pH (7.0±0.2), temperature (35±1.0°C) and biomass (5% v/ v) of the bacterial strains. The removal of metals with strain PPS 04 was more in comparison to the strain PPS 03. The Freundlich isotherms on the data showed that it was linearly fitted for Zn2+ and Pb2+. The values of correlation coefficient (R2) of Freundlich isotherms were greater than 0.812 for Pb2+ and Zn2+. The kinetic study for the rate of removal of Pb2+ and Zn2+ by both species was found to best fit a Pseudo first order reaction. The rate constant was found to be inversely proportional to the concentration of parameters. Thus, the microbial strains were found efficient for the biosorption/removal of Pb2+ and Zn2+.

Keywords : Aerobic treatment, Biosorption, Freundlich isotherms, Pb2+ and Zn2+, Pseudo first order, PME
Bookmark and Share
Home | Admin Panel | Sitemap | Feedback | FAQ
© Copyright 2009-2016. All Rights Reserved. Designed & Maintained by